Title :
Signal waveform estimation in the presence of uncertainties about the steering vector
Author :
Besson, Olivier ; Monakov, Andrei A. ; CHALUS, Christophe
Author_Institution :
Dept. of Avionics & Syst., ENSICA, Toulouse, France
Abstract :
We consider the problem of signal waveform estimation using an array of sensors where there exist uncertainties about the steering vector of interest. This problem occurs in many situations, including arrays undergoing deformations, uncalibrated arrays, scattering around the source, etc. In this paper, we assume that some statistical knowledge about the variations of the steering vector is available. Within this framework, two approaches are proposed, depending on whether the signal is assumed to be deterministic or random. In the former case, the maximum likelihood (ML) estimator is derived. It is shown that it amounts to a beamforming-like processing of the observations, and an iterative algorithm is presented to obtain the ML weight vector. For random signals, a Bayesian approach is advocated, and we successively derive an (approximate) minimum mean-square error estimator and maximum a posteriori estimators. Numerical examples are provided to illustrate the performances of the estimators.
Keywords :
Bayes methods; array signal processing; iterative methods; least mean squares methods; maximum likelihood estimation; Bayesian approach; beamforming-like process; maximum a posteriori estimator; maximum likelihood estimator; maximum likelihood weight vector; minimum mean-square error estimator; sensor array; signal waveform estimation; steering vector; Aerospace electronics; Antenna arrays; Array signal processing; Feeds; Iterative algorithms; Maximum likelihood estimation; Satellites; Scattering; Sensor arrays; Uncertainty; Array processing; beamforming; signal waveform estimation; steering vector errors;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2004.831917