DocumentCode :
106617
Title :
A Millimeter-Wave WPAN Adaptive Phased Array Control Method Using Low-Frequency Part of Signal for Self-Directed System
Author :
Tuan Thanh Ta ; Tanifuji, Shoichi ; Taira, Akinori ; Kameda, Suguru ; Suematsu, Noriharu ; Takagi, Tadashi ; Tsubouchi, Kazuo
Author_Institution :
Tohoku Univ., Sendai, Japan
Volume :
63
Issue :
8
fYear :
2015
fDate :
Aug. 2015
Firstpage :
2682
Lastpage :
2691
Abstract :
In this paper, we propose a self-directed adaptive phased array control method using the low-frequency part of the signal for a millimeter-wave wireless personal area network, which can reduce the hardware requirement and power consumption compared with those of the conventional digital beamforming method. The signal from each element antenna of the antenna array is phase shifted and down converted to the baseband and then divided into two paths. The first paths are low-pass filtered to extract the low-frequency part of the signals for beamforming control. The second paths from all antennas are combined in-phase in an analog domain and then sampled by two high-speed A/D converters for demodulation. A beamforming algorithm using the sampled low-frequency part of the signal is also proposed. The beamforming calculation time is established as a function of the signal-to-noise ratio, the bandwidth of the low-frequency part, and the required phase control accuracy. The calculated values match the measured results. Using the IEEE 802.15.3c specifications with an eight-element array antenna, the calculation time is less than 5 μs for initial beam establishment and less than 30 μs for beam tracking. Therefore, high-speed beamforming is possible while reducing the power consumption.
Keywords :
array signal processing; low-pass filters; personal area networks; antenna array; beamforming algorithm; beamforming calculation time; beamforming control; conventional digital beamforming method; demodulation; hardware requirement; high-speed A/D converters; low frequency; low-pass filtered; millimeter wave WPAN adaptive phased array control method; millimeter wave wireless personal area network; power consumption; self-directed system; signal-to-noise ratio; Accuracy; Array signal processing; Arrays; Bandwidth; Phase shifters; Signal to noise ratio; Fast tracking; millimeter wave; phased array antenna (PAA); self-directed; wireless communication;
fLanguage :
English
Journal_Title :
Microwave Theory and Techniques, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9480
Type :
jour
DOI :
10.1109/TMTT.2015.2443774
Filename :
7128749
Link To Document :
بازگشت