DocumentCode :
1070087
Title :
Characterization of laminar jet impingement cooling in portable computer applications
Author :
Guarino, John R. ; Manno, Vincent P.
Author_Institution :
Integrated Defense Syst., Raytheon Co., Portsmouth, RI, USA
Volume :
25
Issue :
3
fYear :
2002
fDate :
9/1/2002 12:00:00 AM
Firstpage :
337
Lastpage :
346
Abstract :
A thermal characterization study of laminar air jet impingement cooling of electronic components within a geometry representative of the CPU compartment of a typical portable computer is reported. A finite control volume technique was used to solve for the velocity and temperature fields. Convection, conduction and radiation effects were included in the simulations. The range of jet Reynolds numbers considered was 63 to 1500; the applied compartment heat load ranged from 5-15 W. Radiation effects were significant over the range of Reynolds numbers and heat loads considered, while the effect of natural convection was only noticeable for configurations when the ratio Gr/Re2 exceeded 5. The predicted importance of Re rather than jet size was confirmed with test data. Proof of concept was demonstrated with a numerical model representative of a full laptop computer. Both simulations and lab tests showed that low flow rate JI cooling schemes can provide cooling comparable to a high volume flow rate configuration, while using only a fraction of the air flow. Further, under the conservative assumption of steady state, fully powered components, a hybrid cooling scheme utilizing a heat pipe and laminar JI was capable of cooling the processor chip within 11 C of the vendor specified maximum temperature for a system with a total power dissipation of over 21 W.
Keywords :
cooling; heat conduction; heat radiation; jets; laminar flow; natural convection; numerical analysis; portable computers; thermal analysis; thermal management (packaging); 21 W; 5 to 15 W; CPU compartment; conduction effects; convection effects; electronic components; finite control volume technique; heat pipe; hybrid cooling scheme; jet Reynolds numbers; laminar air jet impingement cooling; low flow rate cooling schemes; natural convection; numerical model; portable computer applications; processor chip cooling; radiation effects; simulations; temperature fields; thermal characterization; velocity fields; Application software; Computational geometry; Computational modeling; Electronic components; Electronics cooling; Portable computers; Radiation effects; Temperature control; Testing; Velocity control;
fLanguage :
English
Journal_Title :
Components and Packaging Technologies, IEEE Transactions on
Publisher :
ieee
ISSN :
1521-3331
Type :
jour
DOI :
10.1109/TCAPT.2002.800598
Filename :
1159166
Link To Document :
بازگشت