DocumentCode :
1071446
Title :
Maximum likelihood estimation of the autoregressive model by relaxation on the reflection coefficients
Author :
Tuan, Pham Dlnh
Author_Institution :
Grenoble Univ., St. Martin d´´Heres, France
Volume :
36
Issue :
8
fYear :
1988
fDate :
8/1/1988 12:00:00 AM
Firstpage :
1363
Lastpage :
1367
Abstract :
A method for autoregressive parameter estimation, which successively maximizes the likelihood with respect to each reflection coefficient while keeping the others fixed, is presented. The algorithm generalizes the recursive-maximum-likelihood technique of S.M. Kay (1983), which corresponds to performing only one iteration cycle. An interesting application is the estimation of a Toeplitz covariance matrix. Simulations show that the algorithm converges quite fast and provides much better estimates than current procedures for short record length
Keywords :
iterative methods; matrix algebra; parameter estimation; signal processing; Toeplitz covariance matrix; autoregressive model; autoregressive parameter estimation; iteration cycle; recursive-maximum-likelihood technique; reflection coefficients; relaxation; Acoustic reflection; Acoustic signal processing; Computational modeling; Covariance matrix; Image restoration; Maximum likelihood estimation; Pixel; Signal processing; Signal processing algorithms; Speech processing;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/29.1667
Filename :
1667
Link To Document :
بازگشت