DocumentCode :
1071540
Title :
Support Vector Clustering of Electrical Load Pattern Data
Author :
Chicco, Gianfranco ; Ilie, Irinel-Sorin
Author_Institution :
Dipt. di Ing. Elettr., Politec. di Torino, Torino, Italy
Volume :
24
Issue :
3
fYear :
2009
Firstpage :
1619
Lastpage :
1628
Abstract :
This paper presents an original and effective application of support vector clustering (SVC) to electrical load pattern classification. The proposed SVC-based approach combines the calculation of the support vectors, carried out by using a classical procedure adopting a Gaussian kernel, with a specifically developed deterministic algorithm to form the clusters. This algorithm exploits the meaningful location of the bounded support vectors (BSVs) to define the outliers, identifying the clusters in function of the distance of the non-BSVs to the BSVs. Its implementation is less computationally intensive than other existing approaches and the cluster formation is driven by a single user-defined threshold. Extended comparison to other clustering methods is included to show the effectiveness of the proposed approach in grouping multidimensional load pattern data into non-overlapping clusters. This effectiveness is confirmed by the calculation of various cluster validity indicators. In particular, the most successful tasks are the identification of the outliers and the more effective formation of small numbers of clusters with respect to other methods.
Keywords :
deterministic algorithms; load management; support vector machines; Gaussian kernel; bounded support vectors; customer classification; deterministic algorithm; electrical load pattern data; support vector clustering; Cluster validity; customer classification; electrical load patterns; outlier; support vector clustering;
fLanguage :
English
Journal_Title :
Power Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8950
Type :
jour
DOI :
10.1109/TPWRS.2009.2023009
Filename :
5072232
Link To Document :
بازگشت