DocumentCode :
1072383
Title :
On optimal sequential prediction for general processes
Author :
Nobel, Andrew B.
Author_Institution :
Dept. of Stat., Univ. of North Carolina, Chapel Hill, NC, USA
Volume :
49
Issue :
1
fYear :
2003
fDate :
1/1/2003 12:00:00 AM
Firstpage :
83
Lastpage :
98
Abstract :
This paper considers several aspects of the sequential prediction problem for unbounded, nonstationary processes under pth power loss ℓp(u,v)=|u-v|p, 1\n\n\t\t
Keywords :
binary sequences; calibration; optimisation; prediction theory; Bayes prediction; Cesaro optimal prediction schemes; Hamming loss; additive noise; asymptotic performance; binary processes; binary sequences; calibration; ergodic processes; existence results; general processes; generalized prediction; nonstationary process; optimal binary prediction; optimal sequential prediction; power loss; sequential prediction problem; squared loss; thresholding; unbounded process; uniqueness results; weak calibration; Additive noise; Binary sequences; Calibration; H infinity control; Helium; Neural networks; Random variables; Statistics; Stochastic processes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2002.806141
Filename :
1159764
Link To Document :
بازگشت