Title :
Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure
Author :
Saito, Wataru ; Nitta, Tomohiro ; Kakiuchi, Yorito ; Saito, Yasunobu ; Tsuda, Kunio ; Omura, Ichiro ; Yamaguchi, Masakazu
Author_Institution :
Toshiba Corp., Kawasaki
Abstract :
The dynamic on-resistance increase associated with the current collapse phenomena in high-voltage GaN high-electron-mobility transistors (HEMTs) has been suppressed by employing an optimized field-plate (FP) structure. The fabricated GaN-HEMTs of 600 V/4.7 A and 940 V/4.4 A for power-electronics applications employ a dual-FP structure consisting of a short-gate FP underneath a long-source FP. The measured on-resistance shows minimal increase during high-voltage switching due to increased electric-field uniformity between the gate and drain as a result of using the dual FP. The gate-drain charge Q gd for the fabricated devices has also been measured to provide a basis for discussion of the ability of high-speed switching operation. Although Q gd /A (A: active device area) was almost the same as that of the conventional Si-power MOSFETs, R on A was dramatically reduced to about a seventh of the reported 600-V Si-MOSFET value. Therefore, R on Q gd for 600-V device was reduced to 0.32 OmeganC, which was approximately a sixth of that for the Si-power MOSFETs. The high-voltage GaN-HEMTs have significant advantages over silicon-power MOSFETs in terms of both the reduced on-resistance and the high-speed switching capability.
Keywords :
III-V semiconductors; charge measurement; gallium compounds; high electron mobility transistors; wide band gap semiconductors; current collapse phenomena; dynamic on-resistance suppression; field-plate structure; gate charge measurements; gate-drain charge; high-electron-mobility transistors; high-speed switching operation; high-voltage GaN-HEMT; silicon-power MOSFET; voltage 600 V; Acceleration; Aluminum gallium nitride; Charge measurement; Current measurement; Electron traps; Gallium nitride; HEMTs; MODFETs; MOSFETs; Voltage; GaN; high voltage; high-electron mobility transistor (HEMT); power semiconductor device;
Journal_Title :
Electron Devices, IEEE Transactions on
DOI :
10.1109/TED.2007.901150