Title :
Estimation of Crown Biomass of Pinus spp. From Landsat TM and Its Effect on Burn Severity in a Spanish Fire Scar
Author :
García-Martín, Alberto ; Pérez-Cabello, Fernando ; de la Riva Fernandez, J. ; Llovería, Raquel Montorio
Author_Institution :
Dept. of Geogr. & Spatial Manage., Univ. of Zaragoza, Zaragoza
Abstract :
Remote sensing has been shown to be an efficient tool in the study of forest-fire processes. However, a lack of information on the amount of biomass burnt reduces the accuracy of fire severity and emission models. In this study, we use imagery from the Landsat Thematic Mapper to map crown biomass and burn severity for a large Mediterranean area. Considering the specific characteristics of the Mediterranean environment, two methods to extract useful remote sensing data were employed; both sought to analyze relationships between crown biomass and spectral information. As a result, a crown biomass map of Pinus spp. was created for the entire study area, applying nonlinear regression using the variable MID57 (TM5 + TM7) (R2 = 0.651). Considering only P. halepensis pixels that were burnt in the selected fire scar, the relationships between crown biomass and burn severity were found to be high and significant, yielding an R2 value of 0.516. Finally, a logistic regression model was constructed to map the presence or otherwise of high burn severity levels using crown biomass as the independent variable, yielding in the confusion matrix an overall percentage of data points correctly classified of 77% and a Kappa statistic in the validation sample of 0.554.
Keywords :
fires; image segmentation; regression analysis; remote sensing; vegetation; Kappa statistic; Landsat Thematic Mapper imagery; Mediterranean area; Pinus halepensis; biomass reduced burnt; crown biomass estimation; emission models; fire severity; forest-fire processes; image segmentation; logistic regression model; map construction; nonlinear regression; remote sensing; spectral information; Biomass; Data mining; Earth; Fires; Fuels; Gases; Parameter estimation; Production; Remote sensing; Satellites; Emissions models; Landsat TM; prefire live biomass load; severity levels; wildfire;
Journal_Title :
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
DOI :
10.1109/JSTARS.2008.2011623