Title :
Characterisation of the Components of a Prototype Scanning Intelligent Imaging System for Use in Digital Mammography: The I-ImaS System
Author :
Esbrand, C.J. ; Arvanitis, C.D. ; Pani, S. ; Price, B.D. ; Griffiths, J.A. ; Metaxas, M. ; Royle, G.J. ; Noy, M. ; Leaver, J. ; Longo, R. ; Rokvic, T. ; Turchetta, R. ; Giorgiou, H. ; Schulerud, H. ; Speller, R.D.
Author_Institution :
Dept. of Med. Phys., Univ. Coll. London, London
fDate :
6/1/2009 12:00:00 AM
Abstract :
The physical performance characteristics of a prototype scanning digital mammography (DM) system have been investigated. The I-ImaS system utilises CMOS MAPS technology promoting on-chip data processing; consequently statistical analysis is therefore achievable in real-time for the purpose of exposure modulation via a feedback mechanism during the image acquisition procedure. The imager employs a dual array of twenty CMOS APS sensing devices each individually coupled to a 100 mum thick thallium doped structured CsI scintillator. The X-ray performance of the sensors was characterised where the presampled modulation transfer function (MTF), normalised noise power spectrum (NNPS), and the detective quantum efficiency (DQE) was determined. The presampled MTF was measured utilising the slit technique and was found to be 0.1 at 6 lp/mm. The NNPS measured utilising a W/Al target/filter combination hardened with 38 mm PMMA was seen to decrease with increasing exposure as expected and the manifesting DQE was 0.30 at close to zero spatial frequency at an exposure of 1.75 mR. Preliminary image stitching of the individual steps acquired from the scanning system is presented. A conventionally acquired image that is without the implementation of beam modulation or off-line intelligence is compared and contrasted to an intelligently off-line processed image. Results indicate the implementation of real-time intelligence into the image acquisition phase of digital mammography is foreseeable.
Keywords :
CMOS image sensors; biomedical electronics; biomedical equipment; caesium compounds; data acquisition; diagnostic radiography; feedback; mammography; medical image processing; polymers; scintillation; statistical analysis; thallium; CMOS APS sensing device; CMOS MAPS technology; CsI:Tl; I-ImaS system; PMMA; X-ray performance; complementary metal oxide semiconductor; detective quantum efficiency; feedback mechanism; image acquisition procedure; intelligent imaging system; intelligently off-line processed image; modulation transfer function; monolithic active pixel sensor; normalised noise power spectrum; on-chip data processing; poly-methylmethacrylate; prototype scanning digital mammography; size 100 mum; size 38 mm; statistical analysis; thallium doped cesium iodide scintillator; CMOS image sensors; CMOS process; CMOS technology; Data processing; Delta modulation; Intelligent systems; Mammography; Prototypes; Statistical analysis; System-on-a-chip; CMOS active pixels sensors; data acquisition; detector characterisation; digital mammography; medical imaging;
Journal_Title :
Nuclear Science, IEEE Transactions on
DOI :
10.1109/TNS.2009.2015762