DocumentCode :
1079505
Title :
Classification of anatomical structures in mr brain images using fuzzy parameters
Author :
Algorri, María-Elena ; Flores-Mangas, Fernando
Author_Institution :
Dept. of Digital Syst., Instituto Tecnologico Autonomo de Mexico, Tizapan San Angel, Mexico
Volume :
51
Issue :
9
fYear :
2004
Firstpage :
1599
Lastpage :
1608
Abstract :
We present an algorithm that automatically segments and classifies the brain structures in a set of magnetic resonance (MR) brain images using expert information contained in a small subset of the image set. The algorithm is intended to do the segmentation and classification tasks mimicking the way a human expert would reason. The algorithm uses a knowledge base taken from a small subset of semiautomatically classified images that is combined with a set of fuzzy indexes that capture the experience and expectation a human expert uses during recognition tasks. The fuzzy indexes are tissue specific and spatial specific, in order to consider the biological variations in the tissues and the acquisition inhomogeneities through the image set. The brain structures are segmented and classified one at a time. For each brain structure the algorithm needs one semiautomatically classified image and makes one pass through the image set. The algorithm uses low-level image processing techniques on a pixel basis for the segmentations, then validates or corrects the segmentations, and makes the final classification decision using higher level criteria measured by the set of fuzzy indexes. We use single-echo MR images because of their high volumetric resolution; but even though we are working with only one image per brain slice, we have multiple sources of information on each pixel: absolute and relative positions in the image, gray level value, statistics of the pixel and its three-dimensional neighborhood and relation to its counterpart pixels in adjacent images. We have validated our algorithm for ease of use and precision both with clinical experts and with measurable error indexes over a Brainweb simulated MR set.
Keywords :
biomedical MRI; brain; fuzzy logic; image classification; image resolution; image segmentation; medical image processing; Brainweb simulated MR set; anatomical structure classification; counterpart pixels; fuzzy parameters; gray level value; high volumetric resolution; image recognition; image segmentation; low-level image processing techniques; magnetic resonance brain images; pixel statistics; semiautomatically classified image; single-echo MR images; spatial specific fuzzy indexes; three-dimensional pixel neighborhood; tissue specific fuzzy indexes; Anatomical structure; Biological tissues; Brain; Fuzzy sets; Humans; Image processing; Image recognition; Image segmentation; Magnetic resonance; Pixel; Algorithms; Brain; Cluster Analysis; Computer Graphics; Computer Simulation; Fuzzy Logic; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Information Storage and Retrieval; Magnetic Resonance Imaging; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; User-Computer Interface;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2004.827532
Filename :
1325820
Link To Document :
بازگشت