Title :
Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems
Author :
Basch, E. Bert ; Egorov, Roman ; Gringeri, Steven ; Elby, Stuart
Author_Institution :
Verizon Labs., Waltham, MA
Abstract :
Advances in optical technology now allow practical reconfigurable wavelength networks to be constructed. These networks use wavelength-switching components to dynamically route wavelengths, and provide a level of flexibility and scalability previously not possible. Other components such as low-noise optical amplifiers, electronic dispersion compensators, and advanced modulation techniques simplify system operation, increase capacity, and extend reach. From an application perspective, the architecture of optical transport networks is evolving based on the requirement to support a higher bandwidth access infrastructure. The network architecture also needs to provide the flexibility to incrementally expand on the basis of customer demand and to provide key features such as optical broadcast to lower the cost of video services. The development of new architectures for optical transport networks and how these networks are influenced by critical system parameters and emerging component technologies is reviewed
Keywords :
optical fibre dispersion; optical fibre networks; optical modulation; optical switches; quality of service; telecommunication network routing; wavelength division multiplexing; advanced modulation techniques; customer demand; dense wavelength-division multiplexing; electronic dispersion compensators; low-noise optical amplifiers; network architecture; optical broadcast; optical network flexibility; optical transport networks; reconfigurable wavelength networks; video services; wavelength routing; wavelength-switching components; All-optical networks; Low-noise amplifiers; Optical amplifiers; Optical devices; Optical fiber networks; Optical modulation; Scalability; Semiconductor optical amplifiers; Stimulated emission; Wavelength division multiplexing; Dense wavelength division multiplexing (DWDM); fiber dispersion; modulation formats; network architecture; optical amplification; reconfigurable add/drop multiplexer (ROADM); wavelength selective switch (WSS);
Journal_Title :
Selected Topics in Quantum Electronics, IEEE Journal of
DOI :
10.1109/JSTQE.2006.876167