DocumentCode :
1081417
Title :
Dynamic Assignment in Distributed Motion Planning With Local Coordination
Author :
Zavlanos, Michael M. ; Pappas, George J.
Author_Institution :
Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA
Volume :
24
Issue :
1
fYear :
2008
Firstpage :
232
Lastpage :
242
Abstract :
Distributed motion planning of multiple agents raises fundamental and novel problems in control theory and robotics. In particular, in applications such as coverage by mobile sensor networks or multiple target tracking, a great new challenge is the development of motion planning algorithms that dynamically assign targets or destinations to multiple homogeneous agents, not relying on any a priori assignment of agents to destinations. In this paper, we address this challenge using two novel ideas. First, distributed multidestination potential fields are developed that are able to drive every agent to any available destination. Second, nearest neighbor coordination protocols are developed ensuring that distinct agents are assigned to distinct destinations. Integration of the overall system results in a distributed, multiagent, hybrid system for which we show that the mutual exclusion property of the final assignment is guaranteed for almost all initial conditions. Furthermore, we show that our dynamic assignment algorithm will converge after exploring at most a polynomial number of assignments, dramatically reducing the combinatorial nature of purely discrete assignment problems. Our scalable approach is illustrated with nontrivial computer simulations.
Keywords :
combinatorial mathematics; distributed control; mobile robots; multi-robot systems; path planning; polynomials; combinatorial problem; discrete assignment problem; distributed motion planning; dynamic assignment algorithm; local coordination; mobile sensor network; multiple agent; multiple target tracking; Control theory; Drives; Heuristic algorithms; Motion planning; Nearest neighbor searches; Polynomials; Protocols; Robot kinematics; Robot sensing systems; Target tracking; Distributed control; hybrid systems; motion planning; multiagent assignment problems;
fLanguage :
English
Journal_Title :
Robotics, IEEE Transactions on
Publisher :
ieee
ISSN :
1552-3098
Type :
jour
DOI :
10.1109/TRO.2007.913992
Filename :
4456762
Link To Document :
بازگشت