Title :
PID-type controller tuning for unstable first order plus dead time processes based on gain and phase margin specifications
Author :
Paraskevopoulos, Paraskevas N. ; Pasgianos, George D. ; Arvanitis, Kostas G.
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens
Abstract :
The control of unstable first-order plus dead-time (UFOPDT) processes using proportional-integral (PI) and proportional-integral-differential (PID) type controllers is investigated in this brief. New tuning rules based on the exact satisfaction of gain and phase margin specifications are proposed. The tuning rules are given in the form of iterative algorithms, as well as in the form of accurate, analytical approximations. Moreover, several specific functions, related to the crossover frequencies of the Nyquist plot and to the feasible design specifications for a given process, are derived. These functions, which are particularly useful for the general design of PI- and PID-type controllers for UFOPDT processes are accurately approximated, in order to simplify the tuning procedure. With the proposed approximations, the tuning rules reported in this brief require relatively small computational effort and are particularly useful for online applications
Keywords :
Nyquist diagrams; PI control; control system synthesis; iterative methods; three-term control; Nyquist plot; PID-type controller tuning; first order plus dead time processes; iterative algorithms; process control; proportional-integral controllers controllers; proportional-integral-differential controllers; Agricultural engineering; Feedback; Iterative algorithms; Multi-layer neural network; Pi control; Process control; Proportional control; Robust control; Three-term control; Tuning; Controller tuning; dead-time processes; gain and phase margins; process control; proportional-integral-differential (PID) controllers; unstable processes;
Journal_Title :
Control Systems Technology, IEEE Transactions on
DOI :
10.1109/TCST.2006.876913