Title : 
Observability and fisher information matrix in nonlinear regression
         
        
            Author : 
Jauffret, Claude
         
        
            Author_Institution : 
Univ. du Sud Toulon-Var Batiment X, La Garde
         
        
        
        
        
            fDate : 
4/1/2007 12:00:00 AM
         
        
        
        
            Abstract : 
This paper is devoted to the link between the Fisher information matrix (FIM) invertibility and the observability of a parameter to be estimated in a nonlinear regression problem.
         
        
            Keywords : 
information theory; matrix algebra; regression analysis; Fisher information matrix; nonlinear regression problem; parameter estimation; Additive noise; Closed-form solution; Integral equations; Mathematics; Motion measurement; Noise measurement; Observability; Parameter estimation; Signal detection; Signal processing algorithms;
         
        
        
            Journal_Title : 
Aerospace and Electronic Systems, IEEE Transactions on
         
        
        
        
        
            DOI : 
10.1109/TAES.2007.4285368