DocumentCode :
1083966
Title :
An optimal discrete window for the calculation of power spectra
Author :
Eberhard, A.
Author_Institution :
University of Grenoble, Grenoble, France
Volume :
21
Issue :
1
fYear :
1973
fDate :
2/1/1973 12:00:00 AM
Firstpage :
37
Lastpage :
43
Abstract :
Let g be a function defined upon R, with values in C and G its Fourier transform. Let \\nabla be the distribution upon R defined by \\nabla = \\sum \\min{k=0}\\max {N-1} \\gamma \\kappa \\delta (kT/N) where \\gamma \\kappa \\in R and δαis the Dirac function at abscissa α. \\nabla is a discrete "time window" and its Fourier transform is a periodic function \\Gamma of the frequency (period N/T). Taking the Fourier transform of the product of \\nabla by g, we obtain F[\\nabla _{g}] = F [\\nabla ] \\ast F[g] = \\Gamma \\ast G (* means convolution product). F[\\nabla _{g}] is also a periodic function of the frequency (period N/T) and F[\\nabla _{g}] (frac{j}{T}) = \\sum \\min{k=0}\\max {N-1} \\gamma \\kappa \\cdot g\\kappa \\cdot \\exp - 2i\\pi frac{jk}{N} where gk = g(k(T/N)). F[\\nabla _{g}](j/T) for j=0,..., N-1 is obtained very efficiently using the FFT algorithm of Cooley and Tukey. Cleverly choosing the weights \\gamma \\kappa , |F[\\nabla ](j/T)|^{2} for j = -N/2, ..., N/2-1 is a good estimator of the power spectrum of g. The vector γ (with components \\gamma \\kappa , k=0, ..., N-1 ) that maximize the ratio frac{\\int\\min{-1/T}\\max {1/T}|\\Gamma (\\lambda )|^{2} d\\lambda }{\\int\\min{-N/2T}\\max {N/2T}|\\Gamma (\\lambda )|^{2} d\\lambda } gives us an optimal discrete window. Then γ is the eigenvector corresponding to the greatest eigenvalue λ0of a matrix M defined by M_{q}k = \\Bigg\\{ {{2 \\over N} \\hbox{ if } q = k, \\; q = 0, \\cdots , N - 1 \\atop {\\hbox{sin } 2\\pi ( {q - k \\over N} ) \\over \\pi(q - k)}, \\; k = 0, \\cdots , N - 1} The method for calculating this eigenvector is shown for large values of N (N = 2048).
Keywords :
Convolution; Discrete Fourier transforms; Eigenvalues and eigenfunctions; Fourier transforms; Frequency; Tin;
fLanguage :
English
Journal_Title :
Audio and Electroacoustics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9278
Type :
jour
DOI :
10.1109/TAU.1973.1162426
Filename :
1162426
Link To Document :
بازگشت