DocumentCode :
108424
Title :
Novel Tridiagonal Commuting Matrices for Types I, IV, V, VIII DCT and DST Matrices
Author :
Deyun Wei ; Yuanmin Li
Author_Institution :
Sch. of Math. & Stat., Xidian Univ., Xi´an, China
Volume :
21
Issue :
4
fYear :
2014
fDate :
Apr-14
Firstpage :
483
Lastpage :
487
Abstract :
In this letter, we first propose new nearly tridiagonal commuting matrices of discrete Fourier transform (DFT) matrix and generalized DFT (GDFT) matrix. Then, using the block diagonalizations technique of circular-centrosymmetric and centrosymmetric matrices, we derive novel tridiagonal commuting matrices for each discrete cosine transform (DCT) and discrete sine transform (DST) matrices of the types I, IV, V, and VIII from the commuting matrices of the DFT and GDFT based on the relationships in matrix forms among DFT, GDFT, and various types of DCT and DST. Moreover, the novel tridiagonal commuting matrices of various types of DCT and DST do not have multiple eigenvalues. Last, with these novel commuting matrices, we can easily determine an orthonormal set of Hermite-like eigenvectors for each of their corresponding DCT or DST matrix.
Keywords :
discrete Fourier transforms; discrete cosine transforms; matrix algebra; signal processing; DCT; DST; Hermite-like eigenvectors; circular-centrosymmetric matrices; discrete Fourier transform matrix; discrete cosine transform matrices; discrete sine transform matrices; generalized DFT matrix; tridiagonal commuting matrices; Discrete Fourier transforms; Discrete cosine transforms; Eigenvalues and eigenfunctions; Manganese; Symmetric matrices; Commuting matrix; discrete Fourier transform; discrete cosine transform; discrete sine transform;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2306996
Filename :
6746013
Link To Document :
بازگشت