Author_Institution :
Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA
Abstract :
Wireless channels with multiple transmit/receive antennas are known to provide a high spectral efficiency both when the channel is known to the receiver, and when the channel is not known to the receiver if the signal-to-noise ratio (SNR) is high. Here we analyze such systems at low SNR, which may find application in sensor networks and other low-power devices. The key point is that, since channel estimates are not reliable, it is often not reasonable to assume that the channel is known at the receiver at low SNR. In this unknown channel case, we show that for sensible input distributions, in particular all practical modulation schemes, the capacity is asymptotically quadratic in the SNR, ρ, and thus much less than the known channel case where it exhibits a linear growth in ρ. We show that under various signaling constraints, e.g., Gaussian modulation, unitary space-time modulation, and peak constraints, that mutual information is maximized by using a single transmit antenna. We also show that at low SNR, sending training symbols leads to a rate reduction in proportion to the fraction of training duration time so that it is best not to perform training. Furthermore, we show that the per-channel use mutual information is linear in both the number of receive antennas and the channel coherence interval.
Keywords :
Rayleigh channels; antenna arrays; channel coding; channel estimation; modulation; radio links; receiving antennas; transmitting antennas; wireless sensor networks; Rayleigh fading; channel estimation; low-power devices; multiple transmit-receive antenna; mutual information; sensor network; training duration time; wireless channel; wireless links; Additive noise; Fading; Game theory; Jamming; Mutual information; Notice of Violation; Receiving antennas; Signal to noise ratio; Testing; Wireless sensor networks; Low-signal-to-noise ratio; Rayleigh fading; SNR; multiple-antenna systems; noncoherent channels; regime;