DocumentCode :
1086119
Title :
Fast decoding of algebraic-geometric codes up to the designed minimum distance
Author :
Sakata, Shajiro ; Justesen, Jorn ; Madelung, Y. ; Jensen, Helhe Elbrond ; Hoholdt, Tom
Author_Institution :
Dept. of Comput. Sci. & Inf. Math., Univ. of Electro-Commun., Tokyo, Japan
Volume :
41
Issue :
6
fYear :
1995
fDate :
11/1/1995 12:00:00 AM
Firstpage :
1672
Lastpage :
1677
Abstract :
We present a decoding algorithm for algebraic-geometric codes from regular plane curves, in particular the Hermitian curve, which corrects all error patterns of weight less than d*/2 with low complexity. The algorithm is based on the majority scheme of Feng and Rao (1993) and uses a modified version of Sakata´s (1988) generalization of the Berlekamp-Massey algorithm
Keywords :
algebraic geometric codes; computational complexity; decoding; Berlekamp-Massey algorithm; Hermitian curve; algebraic-geometric codes; error patterns correction; fast decoding algorithm; low complexity; majority scheme; minimum distance; regular plane curves; Algorithm design and analysis; Circuit theory; Computer science; Decoding; Error correction codes; Galois fields; Geometry; Helium; Joining materials; Mathematics;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.476240
Filename :
476240
Link To Document :
بازگشت