DocumentCode :
1087322
Title :
Discrete-Time Expectation Maximization Algorithms for Markov-Modulated Poisson Processes
Author :
Elliott, Robert J. ; Malcolm, W.P.
Author_Institution :
R. Haskayne Sch. of Bus., Calgary Univ., Calgary, AB
Volume :
53
Issue :
1
fYear :
2008
Firstpage :
247
Lastpage :
256
Abstract :
In this paper, we consider parameter estimation Markov-modulated Poisson processes via robust filtering and smoothing techniques. Using the expectation maximization algorithm framework, our filters and smoothers can be applied to estimate the parameters of our model in either an online configuration or an offline configuration. Further, our estimator dynamics do not involve stochastic integrals and our new formulas, in terms of time integrals, are easily discretized, and are written in numerically stable forms in W. P. Malcolm, R. J. Elliott, and J. van der Hoek, ldquoOn the numerical stability of time-discretized state estimation via clark transformations,rdquo presented at the IEEE Conf. Decision Control, Mauii, HI, Dec. 2003.
Keywords :
Markov processes; expectation-maximisation algorithm; filtering theory; parameter estimation; Markov-modulated Poisson processes; discrete-time expectation maximization algorithms; robust filtering; smoothing techniques; time-discretized state estimation; Australia Council; Communications technology; Filters; Parameter estimation; Recursive estimation; Robustness; Signal processing; Signal processing algorithms; State estimation; Stochastic processes; Change of measure; counting processes; expectation maximization (EM) algorithm; martingales;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2007.914305
Filename :
4459795
Link To Document :
بازگشت