DocumentCode :
1087474
Title :
Nonlinear parameter estimation via the genetic algorithm
Author :
Yao, Leehter ; Sethares, William A.
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Inst. of Technol., Taipei, Taiwan
Volume :
42
Issue :
4
fYear :
1994
fDate :
4/1/1994 12:00:00 AM
Firstpage :
927
Lastpage :
935
Abstract :
A modified genetic algorithm is used to solve the parameter identification problem for linear and nonlinear IIR digital filters. Under suitable hypotheses, the estimation error is shown to converge in probability to zero. The scheme is also applied to feedforward and recurrent neural networks
Keywords :
digital filters; feedforward neural nets; filtering and prediction theory; genetic algorithms; parameter estimation; recurrent neural nets; IIR filters; estimation error convergence; feedforward neural networks; genetic algorithm; linear digital filters; nonlinear digital filters; nonlinear parameter estimation; parameter identification; probability; recurrent neural networks; Biological cells; Digital filters; Estimation error; Evolution (biology); Genetic algorithms; Minimization methods; Parameter estimation; Pediatrics; Recurrent neural networks; Surface fitting;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.285655
Filename :
285655
Link To Document :
بازگشت