DocumentCode :
1087542
Title :
On Gradient-Based Search for Multivariable System Estimates
Author :
Wills, Adrian ; Ninness, Brett
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Newcastle Univ., Newcastle, NSW
Volume :
53
Issue :
1
fYear :
2008
Firstpage :
298
Lastpage :
306
Abstract :
This paper addresses the design of gradient-based search algorithms for multivariable system estimation. In particular, the paper here considers so-called ldquofull parametrizationrdquo approaches, and establishes that the recently developed ldquodata-driven local coordinaterdquo methods can be seen as a special case within a broader class of techniques that are designed to deal with rank-deficient Jacobians. This informs the design of a new algorithm that, via a strategy of dynamic Jacobian rank determination, is illustrated to offer enhanced performance.
Keywords :
gradient methods; maximum likelihood estimation; multivariable control systems; search problems; data-driven local coordinate method; dynamic Jacobian rank determination; gradient-based search algorithm; multivariable system estimation; rank-deficient Jacobians; Algorithm design and analysis; Computer science; Cost function; Jacobian matrices; MIMO; Mathematical model; Maximum likelihood estimation; Parameter estimation; State estimation; System identification; Gradient-based search (GBS); parameter estimation; system identification;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2007.914953
Filename :
4459815
Link To Document :
بازگشت