Title :
Imposing structure on Smith-form decompositions of rational resampling matrices
Author :
Evans, Brian L. ; Gardos, Thomas R. ; McClellan, James H.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
fDate :
4/1/1994 12:00:00 AM
Abstract :
Imposing structure on the Smith form of an (integer) periodicity matrix N=UΛV leads to efficient multidimensional (m-D) DFT implementations (Guessoum, 1984). For nonsingular integer and rational matrices, the authors introduce algorithms to generate U (or V) matrices with minimum norm and Λ matrices whose diagonal elements exhibit minimum variance. Such structure simplifies nonuniform m-D filter-bank design (Gardos et al. 1992)
Keywords :
filtering and prediction theory; matrix algebra; multidimensional digital filters; signal processing; Λ matrices; Smith-form decompositions; diagonal elements; integer periodicity matrix; minimum variance; multidimensional DFT implementations; nonsingular integer rational matrices; nonuniform mD filter-bank design; rational resampling matrices; Convolution; Digital signal processing; Matrix decomposition; Multidimensional signal processing; Multidimensional systems; Reduced instruction set computing; Signal processing algorithms; Signal sampling; Speech processing; Unmanned aerial vehicles;
Journal_Title :
Signal Processing, IEEE Transactions on