DocumentCode :
1087753
Title :
A generalized Forney formula for algebraic-geometric codes
Author :
Leonard, Douglas A.
Author_Institution :
Dept. of Discrete & Stat. Sci., Auburn Univ., AL, USA
Volume :
42
Issue :
4
fYear :
1996
fDate :
7/1/1996 12:00:00 AM
Firstpage :
1263
Lastpage :
1268
Abstract :
This correspondence contains a straightforward generalization of decoding of BCH codes to the decoding of algebraic-geometric codes, couched in terms of varieties, ideals, and Grobner bases. This consists of 1) a Berlekamp-Massey-type lattice-shifting row-reduction algorithm with majority voting similar to algorithms in the current literature, 2) a realization that it produces a minimal Grobner basis B for the error-locator ideal I(V) relative to a particular weighted total degree monomial ordering, 3) a factoring of that basis into several minimal PLEX bases, that facilitates finding the variety V of error positions, and 4) a direct generalization of Forney´s formula to calculate error magnitudes using functions σp, which are by-products of this factoring
Keywords :
BCH codes; algebraic geometric codes; decoding; Berlekamp-Massey-type algorithm; algebraic-geometric codes; decoding; error magnitudes; error-locator ideal; factoring; generalized Forney formula; lattice-shifting row-reduction algorithm; majority voting; minimal Grobner basis; minimal PLEX bases; weighted total degree monomial ordering; Decoding; Galois fields; Packaging; Polynomials; Software packages; Voting;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.508855
Filename :
508855
Link To Document :
بازگشت