DocumentCode :
1089224
Title :
The sliding-window Lempel-Ziv algorithm is asymptotically optimal
Author :
Wyner, Aaron D. ; Ziv, Jacob
Author_Institution :
AT&T Bell Labs., Murray Hill, NJ, USA
Volume :
82
Issue :
6
fYear :
1994
fDate :
6/1/1994 12:00:00 AM
Firstpage :
872
Lastpage :
877
Abstract :
The sliding-window version of the Lempel-Ziv data-compression algorithm (sometimes called LZ ´77) has been thrust into prominence recently. A version of this algorithm is used in the highly successful “Stacker” program for personal computers. If is also incorporated into Microsoft´s new MS-DOS-6. Although other versions of the Lempel-Ziv algorithm are known to he optimal in the sense that they compress a data source to its entropy, optimality in this sense has never been demonstrated for this version. In this self-contained paper, we will describe the algorithm, and show that as the “window size,“ a quantity which is related to the memory and complexity of the procedure, goes to infinity, the compression rate approaches the source entropy. The proof is surprisingly general, applying to all finite-alphabet stationary ergodic sources
Keywords :
data compression; entropy; microcomputer applications; operating systems (computers); LZ ´77; Lempel-Ziv data-compression algorithm; MS-DOS-6; Microsoft; Stacker program; asymptotically optimal; data compression; entropy; personal computers; sliding-window Lempel-Ziv algorithm; Artificial intelligence; Data compression; Encoding; Entropy; H infinity control; Jacobian matrices; Microcomputers; Modems; Random sequences; Statistics;
fLanguage :
English
Journal_Title :
Proceedings of the IEEE
Publisher :
ieee
ISSN :
0018-9219
Type :
jour
DOI :
10.1109/5.286191
Filename :
286191
Link To Document :
بازگشت