Title :
Identification of linearly overparametrized nonlinear systems
Author :
Bastin, G. ; Bitmead, R.R. ; Campion, G. ; Gevers, M.
Author_Institution :
Lab. d´´Autom., Dynamique et Analyse des Syst., Catholic Univ. of Louvain, Belgium
fDate :
7/1/1992 12:00:00 AM
Abstract :
Often, a dynamical model is nonlinear in the unknown parameters, but it can be transformed into an overparametrized linear regression model, where the components of the overparametrization vector are nonlinear functions of the smaller number of unknown parameters. An algorithm that directly identifies the unknown parameters is presented, and the authors characterize the convergence domains under two different sets of assumptions on the excitation of the signals. The corresponding convergence rates are computed
Keywords :
convergence; identification; nonlinear control systems; convergence domains; convergence rates; dynamical model; linearly overparametrized nonlinear systems; overparametrized linear regression model; parameter identification; Convergence; Erbium; Estimation error; Linear regression; Nonlinear systems; Parameter estimation; Signal mapping; Signal processing; Systems engineering and theory; Vectors;
Journal_Title :
Automatic Control, IEEE Transactions on