DocumentCode :
109143
Title :
Evolving Fuzzy Rules for Anomaly Detection in Data Streams
Author :
Moshtaghi, Masud ; Bezdek, James C. ; Leckie, Christopher ; Karunasekera, Shanika ; Palaniswami, Marimuthu
Author_Institution :
Fac. of Inf. Technol., Monash Univ., Clayton, VIC, Australia
Volume :
23
Issue :
3
fYear :
2015
fDate :
Jun-15
Firstpage :
688
Lastpage :
700
Abstract :
Evolvable Takagi-Sugeno (T-S) models are fuzzy-rule-based models with the ability to continuously learn and adapt to incoming samples from data streams. The model adjusts both premise and consequent parameters to enhance the performance of the model. This paper introduces a new methodology for the estimation of the premise parameters in the evolvable T-S (eTS) model. Incremental updates for the weighted sample mean and inverse of the covariance matrix enable us to construct an evolvable fuzzy rule base that is used to detect outliers and regime changes in the input stream. We compare our model with Angelov´s eTS+ model with artificial and real data.
Keywords :
covariance matrices; fuzzy set theory; security of data; Angelov eTS+ model; anomaly detection; data streams; eTS model; evolvable T-S models; evolvable Takagi-Sugeno models; fuzzy-rule-based models; inverse covariance matrix; weighted sample mean; Biological system modeling; Computational modeling; Covariance matrices; Data models; Mathematical model; Real-time systems; Standards; Anomaly protection; change detection; evolvable Takagi???Sugeno (T???S) model; evolving fuzzy systems; pattern recognition; streaming data;
fLanguage :
English
Journal_Title :
Fuzzy Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6706
Type :
jour
DOI :
10.1109/TFUZZ.2014.2322385
Filename :
6811198
Link To Document :
بازگشت