Title :
Hall effect magnetic sensors based on polysilicon TFTs
Author :
Carvou, E. ; Le Bihan, F. ; Rogel, R. ; Bonnaud, Oliver
Author_Institution :
Groupe de Microelectronique, Univ. de Rennes, France
Abstract :
This paper deals with magnetic position sensors compatible with large-area electronics using polycrystalline silicon deposited by a low-pressure chemical reaction technique. The principle of this large-area position sensor is a matrix of thin-film field effect transistors (TFTs) with two additional Hall probes. The performances of the TFT-based cells are linked to the crystalline quality of the active polysilicon layer, which depends on the deposition conditions and on technological processes. Layers are made from two precursor gases, silane or disilane, and two processes. We have compared the sensitivity (absolute or relative) of devices and measured their power consumption. Sensors made from disilane have a sensitivity of 18 mV/T, and the ones made with a monolayer process a sensitivity of 28 mV/T. We propose a simple model, which describes the bias dependency of the sensitivity. The effect of geometry and layer morphology on the offset voltage is also studied.
Keywords :
Hall effect devices; field effect transistors; magnetic sensors; thin film transistors; Hall effect magnetic sensors; Hall probes; absolute sensitivity; large position sensors; low-pressure chemical reaction; magnetic position sensors; offset voltage; polycrystalline silicon; polysilicon TFT; power consumption; relative sensitivity; thin-film field effect transistors; Active matrix technology; Chemical sensors; Crystallization; FETs; Hall effect; Hall effect devices; Magnetic sensors; Silicon; Thin film sensors; Thin film transistors; Hall sensor; large position sensors; offset voltage; polycrystalline silicon; thin-film transistors;
Journal_Title :
Sensors Journal, IEEE
DOI :
10.1109/JSEN.2004.833497