DocumentCode :
1092865
Title :
Using multithreshold quadratic sigmoidal neurons to improve classification capability of multilayer perceptrons
Author :
Chiang, Cheng-Chin ; Fu, Hsin-Chia
Author_Institution :
Comput. & Commun. Lab., ITRI, Hsinchu, Taiwan
Volume :
5
Issue :
3
fYear :
1994
fDate :
5/1/1994 12:00:00 AM
Firstpage :
516
Lastpage :
519
Abstract :
This letter proposes a new type of neurons called multithreshold quadratic sigmoidal neurons to improve the classification capability of multilayer neural networks. In cooperation with single-threshold quadratic sigmoidal neurons, the multithreshold quadratic sigmoidal neurons can be used to improve the classification capability of multilayer neural networks by a factor of four compared to committee machines and by a factor of two compared to the conventional sigmoidal multilayer perceptrons
Keywords :
feedforward neural nets; pattern recognition; classification capability; multilayer perceptrons; multithreshold quadratic sigmoidal neurons; Computer science; Councils; Feedforward neural networks; Laboratories; Multi-layer neural network; Multilayer perceptrons; Neural networks; Neurons; Nonhomogeneous media; Upper bound;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.286930
Filename :
286930
Link To Document :
بازگشت