DocumentCode :
1093331
Title :
Analysis and optimization of service availability in a HA cluster with load-dependent machine availability
Author :
Ang, Chee-Wei ; Tham, Chen-Khong
Author_Institution :
Inst. for Infocomm. Res., Singapore, Singapore
Volume :
18
Issue :
9
fYear :
2007
Firstpage :
1307
Lastpage :
1319
Abstract :
Calculations of service availability of a high-availability (HA) cluster are usually based on the assumption of load- independent machine availabilities. In this paper, we study the issues and show how the service availabilities can be calculated under the assumption that machine availabilities are load dependent. We present a Markov chain analysis to derive the steady-state service availabilities of a load-dependent machine availability HA cluster. We show that with a load-dependent machine availability, the attained service availability is now policy dependent. After formulating the problem as a Markov decision process, we proceed to determine the optimal policy to achieve the maximum service availabilities by using the method of policy iteration. Two greedy assignment algorithms are studied: least load and first derivative length (FDL) based, where least load corresponds to some load balancing algorithms. We carry out the analysis and simulations on two cases of load profiles: In the first profile, a single machine has the capacity to host all services in the HA cluster; in the second profile, a single machine does not have enough capacity to host all services. We show that the service availabilities achieved under the first load profile are the same, whereas the service availabilities achieved under the second load profile are different. Since the service availabilities achieved are different in the second load profile, we proceed to investigate how the distribution of service availabilities across the services can be controlled by adjusting the rewards vector.
Keywords :
Markov processes; greedy algorithms; optimisation; resource allocation; workstation clusters; Markov chain analysis; Markov decision process; first derivative length; greedy assignment algorithm; high-availability cluster; load balancing algorithm; load profile; load-dependent machine availability; maximum service availabilities; optimal policy; policy iteration; rewards vector; service availability analysis; service availability calculation; service availability optimization; steady-state service availability; Analytical models; Availability; Clustering algorithms; Computer errors; Dynamic programming; Electronic mail; Humans; Load management; Redundancy; Steady-state; High Availability; Markov chains; Markov decision processes; cluster computing; dynamic programming; neuro-dynamic programming;
fLanguage :
English
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9219
Type :
jour
DOI :
10.1109/TPDS.2007.1071
Filename :
4288129
Link To Document :
بازگشت