We have measured the gain and the carrier lifetime at threshold in shallow proton stripe AlGaAs multiquantum well lasers with several different active layer structures. The lasers studied had active layers with two wells, four wells, six wells, and the modified multiquantum well. The net gain

is found to vary almost linearly with the injection current

for all the laser structures studied. The slope

is largest for the modified multiquantum well (MMQW) laser which is consistent with the observed lowest threshold current of these devices. We find that the carrier density at threshold for the MMQW laser is about a factor of 4 lower than that for a single quantum well laser. Thus, the effect of a nonradiative mechanism (e.g., Auger effect) which varies superlinearly with the injected carrier density is considerably reduced in MMQW lasers compared to that in single quantum well (SQW) lasers or the conventional double heterostructure lasers. The reduced threshold carrier density of the MMQW lasers has important implications for high temperature performance of lasers fabricated from the InGaAsP/InP material systems which are believed to have nonradiative mechanisms that vary superlinearly with carrier density, particularly for those laser structures for which the high temperature operation is not limited by leakage current.