DocumentCode :
1098405
Title :
A strengthening of the Assmus-Mattson theorem
Author :
Calderbank, A.R. ; Delsarte, P. ; Sloane, N. J A
Author_Institution :
AT&T Bell Lab., Murray Hill, NJ, USA
Volume :
37
Issue :
5
fYear :
1991
fDate :
9/1/1991 12:00:00 AM
Firstpage :
1261
Lastpage :
1268
Abstract :
Let w1=d,w2,…,w s be the weights of the nonzero codewords in a binary linear [n,k,d] code C, and let w´ 1, w´2, …, w´3, be the nonzero weights in the dual code C1. Let t be an integer in the range 0<t<d such that there are at most d-t weights w´i with 0<w´in-t E. F. Assmus and H. F. Mattson, Jr. (1969) proved that the words of any weight wi in C form a t-design. The authors show that if w2d+4 then either the words of any nonzero weight wi form a (t+1)-design or else the codewords of minimal weight d form a {1,2,…,t,t+2}-design. If in addition C is self-dual with all weights divisible by 4 then the codewords of any given weight wi form either a (t +1)-design or a {1,2,…,t,t+2}-design. The proof avoids the use of modular forms
Keywords :
encoding; error correction codes; Assmus-Mattson theorem; binary linear codes; nonzero codewords; nonzero weights; self-dual codes; t-design; Laboratories; Lattices;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.133244
Filename :
133244
Link To Document :
بازگشت