Title :
RAPID: reconfigurable and scalable all-photonic interconnect for distributed shared memory multiprocessors
Author :
Kodi, Avinash Karanth ; Louri, Ahmed
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA
Abstract :
In this paper, we describe the design and analysis of a scalable architecture suitable for large-scale distributed shared memory (DSM) systems. The approach is based on an interconnect technology which combines optical components and a novel architecture design. In DSM systems, numerous shared memory transactions such as requests, responses and acknowledgment messages propagate simultaneously in the network. As the network size increases, network contention results in increasing the critical remote memory access latency, which significantly penalizes the performance of DSM systems. In our proposed architecture called reconfigurable and scalable all-photonic interconnect for distributed-shared memory (RAPID), we provide high connectivity by maximizing the channel availability for remote communication to reduce the critical remote latency. RAPID provides fast and efficient unicast, multicast and broadcast capabilities using a combination of aggressively designed wavelength division multiplexing (WDM), time division multiplexing (TDM), and space division multiplexing (SDM) techniques. RAPID is wavelength-routed, permitting the same limited set of wavelength to be reused among all processors. We evaluated RAPID based on network characteristics, power budget criteria, and by simulation using synthetic traffic workloads and compared it against other networks such as electrical ring, torus, mesh, and hypercube networks. We found that RAPID outperforms all networks and still provides good performance as the network is scaled to very large numbers.
Keywords :
cache storage; distributed shared memory systems; multiprocessor interconnection networks; optical computing; optical fibre networks; optical interconnections; space division multiplexing; telecommunication network routing; telecommunication traffic; time division multiplexing; wavelength division multiplexing; broadcast capabilities; cache coherence; channel availability; critical remote latency; critical remote memory access latency; distributed shared memory; multicast capabilities; multiprocessors; optical interconnects; power budget criteria; reconfigurable all-photonic interconnect; remote communication; scalable all-photonic interconnect; scalable optical networks; shared memory transactions; space division multiplexing; synthetic traffic workloads; unicast capabilities; wavelength division multiplexing; wavelength routing; Availability; Broadcasting; Delay; Large-scale systems; Optical design; Optical devices; Optical propagation; Time division multiplexing; Unicast; Wavelength division multiplexing; Cache coherence; distributed shared memory; optical interconnects; scalable optical networks;
Journal_Title :
Lightwave Technology, Journal of
DOI :
10.1109/JLT.2004.833249