Title :
Propelinear 1-Perfect Codes From Quadratic Functions
Author :
Krotov, Denis S. ; Potapov, Vladimir N.
Author_Institution :
Sobolev Inst. of Math., Novosibirsk, Russia
Abstract :
Perfect codes obtained by the Vasil´ev-Schönheim construction from a linear base code and quadratic switching functions are transitive and, moreover, propelinear. This gives at least exp(cN2) propelinear 1-perfect codes of length N over an arbitrary finite field, while an upper bound on the number of transitive codes is exp(C(NlnN)2vphantom)).
Keywords :
group codes; linear codes; Vasil´ev-Schonheim construction; arbitrary finite field; linear base code; propelinear 1-perfect codes; quadratic switching functions; transitive codes; Educational institutions; Error correction codes; Propulsion; Space vehicles; Upper bound; Vectors; Perfect code; automorphism group; propelinear code; transitive code;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2014.2303158