DocumentCode
110093
Title
Propelinear 1-Perfect Codes From Quadratic Functions
Author
Krotov, Denis S. ; Potapov, Vladimir N.
Author_Institution
Sobolev Inst. of Math., Novosibirsk, Russia
Volume
60
Issue
4
fYear
2014
fDate
Apr-14
Firstpage
2065
Lastpage
2068
Abstract
Perfect codes obtained by the Vasil´ev-Schönheim construction from a linear base code and quadratic switching functions are transitive and, moreover, propelinear. This gives at least exp(cN2) propelinear 1-perfect codes of length N over an arbitrary finite field, while an upper bound on the number of transitive codes is exp(C(NlnN)2vphantom)).
Keywords
group codes; linear codes; Vasil´ev-Schonheim construction; arbitrary finite field; linear base code; propelinear 1-perfect codes; quadratic switching functions; transitive codes; Educational institutions; Error correction codes; Propulsion; Space vehicles; Upper bound; Vectors; Perfect code; automorphism group; propelinear code; transitive code;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/TIT.2014.2303158
Filename
6746188
Link To Document