DocumentCode :
1102743
Title :
Neural network architectures for parameter estimation of dynamical systems
Author :
Raol, J.R. ; Madhuranath, H.
Author_Institution :
Div. Flight Mech. & Control, Nat. Aerosp. Lab., Bangalore, India
Volume :
143
Issue :
4
fYear :
1996
fDate :
7/1/1996 12:00:00 AM
Firstpage :
387
Lastpage :
394
Abstract :
Various recurrent neural network architectures for solving the problems of parameter estimation in dynamical systems are presented. The architectures based on precomputation of weight/bias information (Hopfield neural network), direct gradient computation with and without normalisation and output error method are developed. A typical computer simulation result is given
Keywords :
neural net architecture; optimisation; parameter estimation; recurrent neural nets; state-space methods; Hopfield neural network; dynamical systems; gradient method; neural network architectures; output error; parameter estimation; recurrent neural network; state space representation;
fLanguage :
English
Journal_Title :
Control Theory and Applications, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2379
Type :
jour
DOI :
10.1049/ip-cta:19960338
Filename :
511264
Link To Document :
بازگشت