DocumentCode :
1104749
Title :
Threshold Logic Asymptotes
Author :
Winder, Robert O.
Author_Institution :
IEEE
Issue :
4
fYear :
1970
fDate :
4/1/1970 12:00:00 AM
Firstpage :
349
Lastpage :
353
Abstract :
Let Rnmbe the number of linearly separable n-argument functions specified on some m points of the n-cube. Let R̄nmand Ṟnmbe, respectively, the minimum and maximum values attained over all choices of the m points. It is known that R̄nm<2mn/n!. 1) Two published "simplifications" of the argument which establish this upper bound are shown to be fallacious. 2) It is proved that Ṟnm≥4m(lg m−1)/2. 3) It is proved that if m is less than exponential in n, then as n→∞, R̄nm≈(m/n)n + lower order terms. 4) Let Lnmbe the maximum number of threshold gates needed to realize an arbitrary n-argument switching function specified on m points. It is shown that Lnm≳2(m/lg m)1/2.
Keywords :
Bounds, partially specified threshold functions, threshold functions, threshold gate networks, threshold logic.; Aerospace electronics; Character generation; Logic gates; Pattern recognition; Upper bound; Bounds, partially specified threshold functions, threshold functions, threshold gate networks, threshold logic.;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/T-C.1970.222921
Filename :
1671514
Link To Document :
بازگشت