In this paper we deal with the problem of retrieving a finite-extent signal from the magnitude of its Fourier transform. We will present a brief review of the algebraic problem of the uniqueness of the solution for both discrete and continuous phase retrieval models. Several important issues which are yet unresolved will be pointed out and discussed. We will then consider the discrete phase retrieval problem as a special case of a more general problem which consists of recovering a real-valued signal x from the magnitude of the output of a linear distortion:

. An important result concerning the conditioning of this problem will be obtained for this general setting by means of algebraic-geometric techniques. In particular, the problems of the existence of a solution for phase retrieval, conditioning of the problem and stability of the (essentially) unique solution will be addressed.