• DocumentCode
    1106568
  • Title

    Value Distributions of Exponential Sums From Perfect Nonlinear Functions and Their Applications

  • Author

    Feng, Keqin ; Luo, Jinquan

  • Author_Institution
    Tsinghua Univ., Beijing
  • Volume
    53
  • Issue
    9
  • fYear
    2007
  • Firstpage
    3035
  • Lastpage
    3041
  • Abstract
    In this paper we present a unified way to determine the values and their multiplicities of the exponential sums SigmaxisinF(q)zetap Tr(af(x)+bx)(a,bisinFq,q=pm,pges3) for all perfect nonlinear functions f which is a Dembowski-Ostrom polynomial or p = 3,f=x(3(k)+1)/2 where k is odd and (k,m)=1. As applications, we determine (1) the correlation distribution of the m-sequence {alambda=Tr(gammalambda)}(lambda=0,1,...) and the sequence {blambda=Tr(f(gammalambda))}(lambda=0,1,...) over Fp where gamma is a primitive element of Fq and (2) the weight distributions of the linear codes over Fp defined by f.
  • Keywords
    correlation theory; linear codes; m-sequences; nonlinear functions; polynomials; Dembowski-Ostrom polynomial; correlation distribution; exponential sums; linear codes; m-sequence; nonlinear functions; value distributions; weight distributions; Cryptography; Hamming weight; Linear code; Mathematics; Polynomials; Correlation distribution; Galois group; exponential sums; perfect nonlinear; quadratic forms; weight distribution;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2007.903153
  • Filename
    4294155