• DocumentCode
    11074
  • Title

    Nonparametric Bayesian modeling of complex networks: an introduction

  • Author

    Schmidt, Mikkel N. ; Morup, Morten

  • Author_Institution
    DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark
  • Volume
    30
  • Issue
    3
  • fYear
    2013
  • fDate
    May-13
  • Firstpage
    110
  • Lastpage
    128
  • Abstract
    Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models for complex networks can be derived and point out relevant literature.
  • Keywords
    Bayes methods; Markov processes; Monte Carlo methods; complex networks; telecommunication networks; Markov chain processing; Monte Carlo method; complex network; finite parametric model; infinite mixture model; nonparametric Bayesian modeling; Adaptation models; Bayes methods; Complex networks; Learning systems; Markov processes; Modeling; Monte Carlo methods;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    1053-5888
  • Type

    jour

  • DOI
    10.1109/MSP.2012.2235191
  • Filename
    6494690