DocumentCode :
1107976
Title :
Speaker-independent isolated word recognition using dynamic features of speech spectrum
Author :
Furui, Sadaoki
Author_Institution :
N.T.T., Midoricho, Musashino-shi, Tokyo, Japan.
Volume :
34
Issue :
1
fYear :
1986
fDate :
2/1/1986 12:00:00 AM
Firstpage :
52
Lastpage :
59
Abstract :
This paper proposes a new isolated word recognition technique based on a combination of instantaneous and dynamic features of the speech spectrum. This technique is shown to be highly effective in speaker-independent speech recognition. Spoken utterances are represented by time sequences of cepstrum coefficients and energy. Regression coefficients for these time functions are extracted for every frame over an approximately 50 ms period. Time functions of regression coefficients extracted for cepstrum and energy are combined with time functions of the original cepstrum coefficients, and used with a staggered array DP matching algorithm to compare multiple templates and input speech. Speaker-independent isolated word recognition experiments using a vocabulary of 100 Japanese city names indicate that a recognition error rate of 2.4 percent can be obtained with this method. Using only the original cepstrum coefficients the error rate is 6.2 percent.
Keywords :
Cepstrum; Cities and towns; Error analysis; Feature extraction; Humans; Interpolation; Polynomials; Speech analysis; Speech recognition; Vocabulary;
fLanguage :
English
Journal_Title :
Acoustics, Speech and Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
0096-3518
Type :
jour
DOI :
10.1109/TASSP.1986.1164788
Filename :
1164788
Link To Document :
بازگشت