DocumentCode :
1109565
Title :
Redundancy in Feature Extraction
Author :
Heydorn, Richard P.
Author_Institution :
IEEE
Issue :
9
fYear :
1971
Firstpage :
1051
Lastpage :
1054
Abstract :
Given two random variables X and Y, a definition is offered that gives a condition for Y to be redundant with respect to X. It is shown that if such redundancy exists, then observations on Y, i.e., pattern vector elements related to Y, can be eliminated without increasing the classification error. A test for redundancy is developed and applied to the problem of preprocessing pattern vectors to eliminate redundant vector elements.
Keywords :
Dimensionality reduction, feature extraction, pattern recognition, preprocessing, redundancy.; Covariance matrix; Distribution functions; Feature extraction; Pattern recognition; Probability distribution; Random variables; Redundancy; Testing; Dimensionality reduction, feature extraction, pattern recognition, preprocessing, redundancy.;
fLanguage :
English
Journal_Title :
Computers, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9340
Type :
jour
DOI :
10.1109/T-C.1971.223401
Filename :
1671994
Link To Document :
بازگشت