DocumentCode :
1109860
Title :
Orthogonal least-squares learning algorithm with local adaptation process for the radial basis function networks
Author :
Chng, Eng-Song ; Yang, Howard Hua ; Bös, Siegfried
Author_Institution :
RIKEN, Inst. of Phys. & Chem. Res., Saitama, Japan
Volume :
3
Issue :
8
fYear :
1996
Firstpage :
253
Lastpage :
255
Abstract :
We introduce a local adaptation process in the orthogonal least squares (OLS) learning algorithm for the selection of radial basis function (RBF) networks. Using simulation results, we show that the proposed algorithm can find significantly better subset models than the OLS algorithm.
Keywords :
feedforward neural nets; learning (artificial intelligence); multilayer perceptrons; local adaptation process; orthogonal least-squares learning algorithm; radial basis function networks; simulation results; subset models; Equations; Fiber reinforced plastics; Laboratories; Least squares methods; Linear regression; Radial basis function networks; Signal processing algorithms; Training data; Vectors;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/97.511811
Filename :
511811
Link To Document :
بازگشت