• DocumentCode
    111115
  • Title

    MLE’s Bias Pathology, Model Updated MLE, and Wallace’s Minimum Message Length Method

  • Author

    Yatracos, Yannis G.

  • Author_Institution
    Cyprus Univ. of Technol., Limassol, Cyprus
  • Volume
    61
  • Issue
    3
  • fYear
    2015
  • fDate
    Mar-15
  • Firstpage
    1426
  • Lastpage
    1431
  • Abstract
    The inherent bias pathology of the maximum likelihood estimation method is confirmed for models with unknown parameters θ and ψ when maximum likelihood estimate (MLE) ψ̂ is function of MLE θ̂. To reduce ψ̂´s bias the likelihood equation to be solved for ψ is updated using the model for the data Y in it. For various models with ψ a shape parameter model updated (MU) MLE, ψ̂MU, reduces ψ̂´s bias. For the Pareto model ψ̂MU reduces in addition ψ̂´s variance. The results explain the difference that puzzled Fisher, between biased ψ̂ and the unbiased estimate he obtained for two models with the abandoned two-stage procedure used in MUMLE´s implementation. ψ̂MU is also obtained with the minimum message length method thus motivating the use of priors in frequentist inference.
  • Keywords
    Pareto analysis; maximum likelihood estimation; Fisher puzzling; MLE; MU; Pareto model; Wallace minimum message length method; frequentist inference; maximum likelihood estimation method; shape parameter model updating; Data models; Equations; Mathematical model; Maximum likelihood estimation; Pathology; Shape; Bias; Bias, Likelihood equations; Maximum likelihood; Minimum Message Length Method; Model Updated MLE; Specication problem; Two-stage MLE; likelihood equations; maximum likelihood; minimum message length method; model updated MLE; specification problem; two-stage MLE;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2014.2386329
  • Filename
    6998937