DocumentCode :
1111408
Title :
Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation
Author :
Galatsanos, Nikolas P. ; Katsaggelos, Aggelos K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA
Volume :
1
Issue :
3
fYear :
1992
fDate :
7/1/1992 12:00:00 AM
Firstpage :
322
Lastpage :
336
Abstract :
The application of regularization to ill-conditioned problems necessitates the choice of a regularization parameter which trades fidelity to the data with smoothness of the solution. The value of the regularization parameter depends on the variance of the noise in the data. The problem of choosing the regularization parameter and estimating the noise variance in image restoration is examined. An error analysis based on an objective mean-square-error (MSE) criterion is used to motivate regularization. Two approaches for choosing the regularization parameter and estimating the noise variance are proposed. The proposed and existing methods are compared and their relationship to linear minimum-mean-square-error filtering is examined. Experiments are presented that verify the theoretical results
Keywords :
noise; parameter estimation; picture processing; error analysis; image restoration; linear minimum-mean-square-error filtering; noise variance estimation; regularization parameter; Additive noise; Degradation; Eigenvalues and eigenfunctions; Equations; Error analysis; Filtering; Image restoration; Mean square error methods; Nonlinear filters; Parameter estimation;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.148606
Filename :
148606
Link To Document :
بازگشت