DocumentCode :
1116782
Title :
Detection of hiding in the least significant bit
Author :
Dabeer, Onkar ; Sullivan, Kenneth ; Madhow, Upamanyu ; Chandrasekaran, Shivakumar ; Manjunath, B.S.
Author_Institution :
Qualcomm Inc., San Diego, CA, USA
Volume :
52
Issue :
10
fYear :
2004
Firstpage :
3046
Lastpage :
3058
Abstract :
In this paper, we apply the theory of hypothesis testing to the steganalysis, or detection of hidden data, in the least significant bit (LSB) of a host image. The hiding rate (if data is hidden) and host probability mass function (PMF) are unknown. Our main results are as follows. a) Two types of tests are derived: a universal (over choices of host PMF) method that has certain asymptotic optimality properties and methods that are based on knowledge or estimation of the host PMF and, hence, an appropriate likelihood ratio (LR). b) For a known host PMF, it is shown that the composite hypothesis testing problem corresponding to an unknown hiding rate reduces to a worst-case simple hypothesis testing problem. c) Using the results for a known host PMF, practical tests based on the estimation of the host PMF are obtained. These are shown to be superior to the state of the art in terms of receiver operating characteristics as well as self-calibration across different host images. Estimators for the hiding rate are also developed.
Keywords :
cryptography; data encapsulation; image coding; probability; hidden data detection; host image; host probability mass function; hypothesis testing; least significant bit; likelihood ratio; steganalysis; Authentication; Data encapsulation; Focusing; Probability; Statistics; Steganography; Supervised learning; Testing; Watermarking; Approximate log-liklihood ratio test; LSB hiding; hypothesis testing; steganalysis; universal asymptotic optimality;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2004.833869
Filename :
1337281
Link To Document :
بازگشت