DocumentCode :
1117194
Title :
Steps Toward Knowledge-Based Machine Translation
Author :
Carbonell, Jaime G. ; Cullingford, Richard E. ; Gershman, Anatole V.
Author_Institution :
Artificial Intelligence Project, Department of Computer Science, Yale University, New Haven, CT 06520; Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213.
Issue :
4
fYear :
1981
fDate :
7/1/1981 12:00:00 AM
Firstpage :
376
Lastpage :
392
Abstract :
This paper considers the possibilities for knowledge-based automatic text translation in the light of recent advances in artificial intelligence. It is argued that competent translation requires some reasonable depth of understanding of the source text, and, in particular, access to detailed contextual information. The following machine translation paradigm is proposed. First, the source text is analyzed and mapped into a language-free conceptual representation. Inference mechanisms then apply contextual world knowledge to augment the representation in various ways, adding information about items that were only implicit in the input text. Finally, a natural-language generator maps appropriate sections of the language-free representation into the target language. We discuss several difficult translation problems from this viewpoint with examples of English-to-Spanish and English-to-Russian translations; and illustrate possible solutions as embodied in a computer understander called SAM, which reads certain kinds of newspaper stories, then summarizes or paraphrases them in a variety of languages.
Keywords :
Artificial intelligence; Computational intelligence; Computational linguistics; Computer science; Computerized monitoring; Humans; Inference mechanisms; Knowledge representation; Machine intelligence; Natural language processing; Artificial intelligence; computational linguistics; inference; knowledge representation; language generation; machine translation; natural language processing; scripts; summarization;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1981.4767124
Filename :
4767124
Link To Document :
بازگشت