Title :
Thresholding Using Relaxation
Author :
Rosenfeld, Azriel ; Smith, Russell C.
Author_Institution :
Computer Vision Laboratory, Computer Science Center, University of Maryland, College Park, MD 20742.
Abstract :
If a picture contains dark objects on a light background (or vice versa), the objects can be extracted by thresholding, i.e., by classifying the pixels into ``light´´ and ``dark´´ classes. If the picture is noisy, so that the object and background gray level populations overlap, there will be errors in the thresholded output. A relaxation process can be used to reduce these errors; we classify the pixels probabilistically, and then adjust the probabilities for each pixel, based on its neighbors´ probabilities, with light reinforcing light and dark dark. When this adjustment process is iterated, the dark probabilities become very high for pixels that belong to dark regions, and vice versa, so that thresholding becomes trivial.
Keywords :
Background noise; Biological cells; Clouds; Computer science; Computer vision; Error correction; Histograms; Night vision; Noise level; Sea surface; Relaxation; segmentation; thresholding;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.1981.4767152