DocumentCode :
1122168
Title :
Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields
Author :
Derin, Haluk ; Elliott, Howard ; Cristi, Roberto ; Geman, Donald
Author_Institution :
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003.
Issue :
6
fYear :
1984
Firstpage :
707
Lastpage :
720
Abstract :
A new image segmentation algorithm is presented, based on recursive Bayes smoothing of images modeled by Markov random fields and corrupted by independent additive noise. The Bayes smoothing algorithm yields the a posteriori distribution of the scene value at each pixel, given the total noisy image, in a recursive way. The a posteriori distribution together with a criterion of optimality then determine a Bayes estimate of the scene. The algorithm presented is an extension of a 1-D Bayes smoothing algorithm to 2-D and it gives the optimum Bayes estimate for the scene value at each pixel. Computational concerns in 2-D, however, necessitate certain simplifying assumptions on the model and approximations on the implementation of the algorithm. In particular, the scene (noiseless image) is modeled as a Markov mesh random field, a special class of Markov random fields, and the Bayes smoothing algorithm is applied on overlapping strips (horizontal/vertical) of the image consisting of several rows (columns). It is assumed that the signal (scene values) vector sequence along the strip is a vector Markov chain. Since signal correlation in one of the dimensions is not fully used along the edges of the strip, estimates are generated only along the middle sections of the strips. The overlapping strips are chosen such that the union of the middle sections of the strips gives the whole image. The Bayes smoothing algorithm presented here is valid for scene random fields consisting of multilevel (discrete) or continuous random variables.
Keywords :
Additive noise; Cost function; Image segmentation; Layout; Markov random fields; Pixel; Random variables; Signal generators; Smoothing methods; Strips; Bayes smoothing; Markov random fields; image segmentation;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1984.4767595
Filename :
4767595
Link To Document :
بازگشت