DocumentCode :
1122370
Title :
Computational Experiments with a Feature Based Stereo Algorithm
Author :
Grimson, W. Eric L
Author_Institution :
Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Issue :
1
fYear :
1985
Firstpage :
17
Lastpage :
34
Abstract :
Computational models of the human stereo system can provide insight into general information processing constraints that apply to any stereo system, either artificial or biological. In 1977 Marr and Poggio proposed one such computational model, which was characterized as matching certain feature points in difference-of-Gaussian filtered images and using the information obtained by matching coarser resolution representations to restrict the search space for matching finer resolution representations. An implementation of the algorithm and its testing on a range of images was reported in 1980. Since then a number of psychophysical experiments have suggested possible refinements to the model and modifications to the algorithm. As well, recent computational experiments applying the algorithm to a variety of natural images, especially aerial photographs, have led to a number of modifications. In this paper, we present a version of the Marr-Poggio-Grimson algorithm that embodies these modifications, and we illustrate its performance on a series of natural images.
Keywords :
Biological system modeling; Biology computing; Computational modeling; Humans; Image resolution; Information filtering; Information filters; Information processing; Matched filters; Testing; Feature matching; stereo vision;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.1985.4767615
Filename :
4767615
Link To Document :
بازگشت