DocumentCode :
1122444
Title :
A Comparative Study of Local Matching Approach for Face Recognition
Author :
Zou, Jie ; Ji, Qiang ; Nagy, George
Author_Institution :
Rensselaer Polytech. Inst., Troy
Volume :
16
Issue :
10
fYear :
2007
Firstpage :
2617
Lastpage :
2628
Abstract :
In contrast to holistic methods, local matching methods extract facial features from different levels of locality and quantify them precisely. To determine how they can be best used for face recognition, we conducted a comprehensive comparative study at each step of the local matching process. The conclusions from our experiments include: (1) additional evidence that Gabor features are effective local feature representations and are robust to illumination changes; (2) discrimination based only on a small portion of the face area is surprisingly good; (3) the configuration of facial components does contain rich discriminating information and comparing corresponding local regions utilizes shape features more effectively than comparing corresponding facial components; (4) spatial multiresolution analysis leads to better classification performance; (5) combining local regions with Borda count classifier combination method alleviates the curse of dimensionality. We implemented a complete face recognition system by integrating the best option of each step. Without training, illumination compensation and without any parameter tuning, it achieves superior performance on every category of the FERET test: near perfect classification accuracy (99.5%) on pictures taken on the same day regardless of indoor illumination variations, and significantly better than any other reported performance on pictures taken several days to more than a year apart. The most significant experiments were repeated on the AR database, with similar results.
Keywords :
Gabor filters; face recognition; feature extraction; image matching; AR database; Borda count classifier combination method; FERET test; Gabor features; face recognition; facial components; feature extraciton; local matching approach; parameter tuning; spatial multiresolution analysis; Face recognition; Facial features; Independent component analysis; Lighting; Linear discriminant analysis; Multiresolution analysis; Principal component analysis; Robustness; Shape; Visual databases; AR database; FERET database; face recognition; local matching method; Algorithms; Artificial Intelligence; Biometry; Discriminant Analysis; Face; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2007.904421
Filename :
4303157
Link To Document :
بازگشت