Title :
Orthogonal eigensubspace estimation using neural networks
Author :
Mathew, George ; Reddy, V.U.
Author_Institution :
Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India
fDate :
7/1/1994 12:00:00 AM
Abstract :
We present a neural network (NN) approach for simultaneously estimating all or some of the orthogonal eigenvectors of a symmetric nonindefinite matrix corresponding to its repeated minimum (in magnitude) eigenvalue. This problem has its origin in the constrained minimization framework and has extensive applications in signal processing. We recast this problem into the NN framework by constructing an appropriate energy function which the NN minimizes. The NN is of feedback type with the neurons having sigmoidal activation function. The proposed approach is analyzed to characterize the nature of the minimizers:of the energy function. The main result is that “the matrix W* is a minimizer of the energy function if and only if the columns of W* are the orthogonal eigenvectors with a given norm corresponding to the smallest eigenvalue of the given matrix”. Further, all minimizers are global minimizers. Bounds on the integration time-step that is required to numerically solve the system of differential equations (which define the dynamics of the NN) have also been derived. Results of computer simulations are presented to support our analysis
Keywords :
differential equations; eigenvalues and eigenfunctions; feedback; matrix algebra; neural nets; signal processing; computer simulations; constrained minimization; differential equations; energy function; feedback type neural network; global minimizers; integration time-step bounds; neural networks; neurons; orthogonal eigensubspace estimation; orthogonal eigenvectors; sigmoidal activation function; signal processing; symmetric nonindefinite matrix; Covariance matrix; Differential equations; Eigenvalues and eigenfunctions; Iterative algorithms; Neural networks; Neurofeedback; Neurons; Signal processing; Signal processing algorithms; Symmetric matrices;
Journal_Title :
Signal Processing, IEEE Transactions on